استخدام المادة والطاقة

- تذكر بالكمسات: لقد عرفت في السنة الرابعة متوسط من خلال مجال التغذية عند الإنسان أن الأغذية تتحول أثناء عملية الهضم إلى عنصر بسيطة قابلة للإمتصاص تسمى المغذيات يقوم الدم بنقلها إلى كافة أنحاء الجسم لتعمل كمصادر للطاقة والبناء والحياة.

ما هي مظاهر وآليات استخدام المغذيات عند الكائنات الحية؟

الوحدة الأولى: آليات النمو والتجديد الخلوي

- بعیدة: ظاهرة النمو موجودة عند جميع الكائنات الحية. وننظرنا لبطئها فإننا لكار نلاحظها مباشرة. يمكن إبرازها عن طريق مسلسل من الأشكال والصور مثل مراحل هذه الظاهرة. كا يمكن استخدام التكنولوجيات الحديثة في الإسراع من الظاهرة بصورة متحركة...

1- إظهار عملية النمو:
 - عند البذور: تبين الوثيقة (1) أن النمو عند نبات الفاصوليا يعني الزيادة في الوزن والطول طيلة فترة تقدر بحوالي شهرين حيث يكمال نموه بعدها.
 - عند الإنسان: تبين الوثيقة (2) أن النمو عند الإنسان بعید عن الحمل حيث يزداد الجنين في الطول والوزن طيلة فترة الحمل والتي تدوَّن تسمى أشهر. يستمر النمو بعد الولادة حتى السن 18 إلى 20 سنة تقريبا كما تبينه منحنى الوظيفة (3).
 - إذن فإن ظاهرة النمو موجودة عند جميع الكائنات الحية.

- وهي تلك التغيرات المورفولوجية والتي تجلى في الزيادة في الطول والوزن في فترة محددة من عمر الكائن الحي.
ما الفرق بين نمو النباتات ونمو الحيوانات؟

- مناطق النمو:
 1- عند النباتات: تبين الوثيقة (4) أن نمو الجذر يحصل في منطقة القمة النامية حيث ترتفع لتفغّل في الأزمنة. في نفس منطقة تقع ورائها مباشرةً تسمى منطقة الاستطالة وهي خلايا جذعية ناتجة عن انقسام خلايا القمة النامية حيث تتفصل لتنقع بالجذر إلى أسفل تاركاً أجزاءها الخلفية لمناطق النمو العليا.
 2- عند الثدييات (5) أن نمو الساق يحصل في منطقة البقاع حيث يتواجد في الأجزاء الخلفية للجذر إلى أعلى عن طريق تباعد الرؤوس.

أما النمو العرضي للساق والجذر فيحدث في نفس ترسبات جديدة لتغطت من الخلايا تزيد من سمك العضو النباتي انطلاقاً من منطقة ذات نشاط انقسامي مستمر تسمى الكامبيوم تقع بين الخشب واللحاء كما تظهر الوثيقة (6).

- عند الحيوانات:
 3- مناطق النمو عند الحيوانات تكون في كل خلايا الجسم. تأخذ مثلاً عند الإنسان حيث تبين الوثيقة (7) صورة إشعاعية ليد طفل عمره 13 سنة وأكثر للبالغ عمره 20 سنة. إن العظم ينمو طولياً بفضل المادة الغضروفية الموجودة في نهاية السلالات والذي يكتمل نموه تآكل كل المادة الغضروفية.

كيف يحدث النمو؟

- نمو الصبغ: (8) مقاطعاً طولياً في منطقة القمة النامية للجذر حيث تظهر الخلايا تحت المجهر في حالة نشاط انقسامي كفيف في مختلف المراحل تسمى النسيج الرمسيجي. تنقسم كل خلية إلى اثنين تنقع كل واحدة منها فيصبح العدد الأربعة ثم ثمانية ... وهكذا تتشكل قلتة من الخلايا تزيد من حجم وطول الجذر.
كيف يحدث الانقسام: وما مراحله؟

- **المرحلة الأولى**: تظهر الوضعية النماذج الخلايا النباتية والحيوانية بشكل طبيعي. هذه الخلايا ستحتاج إلى تكوين خلايا انتقائية من الخلية.

- **المرحلة الثانية**: تتكون الخلايا النباتية وتوزع في فتحات الخلايا المحببة. هذه الخلايا ستحتاج إلى تكوين خلايا انتقائية من الخلية.

- **المرحلة الثالثة**: تتكون الخلايا النباتية وتوزع في فتحات الخلايا المحببة. هذه الخلايا ستحتاج إلى تكوين خلايا انتقائية من الخلية.

- **المرحلة الرابعة**: تتكون الخلايا النباتية وتوزع في فتحات الخلايا المحببة. هذه الخلايا ستحتاج إلى تكوين خلايا انتقائية من الخلية.

- **المرحلة الخامسة**: تتكون الخلايا النباتية وتوزع في فتحات الخلايا المحببة. هذه الخلايا ستحتاج إلى تكوين خلايا انتقائية من الخلية.

ما الفرق بين انقسام الخلايا النباتية والحيوانية؟

- **الانقسام في الخلايا النباتية**
 - **المرحلة الأولى**: تتشكل خلايا النبات من الفنوسو النباتية وهي عملية دروع الأوراق نحو المركز.
 - **المرحلة الثانية**: تتشكل الخلايا النباتية في كل قطب. تكون الخلايا النباتية في كل قطب من قطبي الخلية.
 - **المرحلة الثالثة**: تتشكل الخلايا النباتية في كل قطب. تكون الخلايا النباتية في كل قطب من قطبي الخلية.
 - **المرحلة الرابعة**: تتشكل الخلايا النباتية في كل قطب. تكون الخلايا النباتية في كل قطب من قطبي الخلية.
 - **المرحلة الخامسة**: تتشكل الخلايا النباتية في كل قطب. تكون الخلايا النباتية في كل قطب من قطبي الخلية.

ما الفرق بين نمو النباتات ونمو الحيوانات؟

- **نمو النبات**
 - **المرحلة الأولى**: يحدث النمو في طول فترة خاصة من النبات، وتختلف فترة حياة النبات، وتختلف فترات النزول والنشر، وتختلف في النباتات ذات النباتات النباتية، وتختلف في النباتات ذات النباتات النباتية، وتختلف في النباتات ذات النباتات النباتية.

- **نمو الحيوان**
 - **المرحلة الأولى**: يحدث النمو في طول فترة خاصة من النبات، وتختلف فترة حياة النبات، وتختلف فترات النزول والنشر، وتختلف في النباتات ذات النباتات النباتية، وتختلف في النباتات ذات النباتات النباتية، وتختلف في النباتات ذات النباتات النباتية.

خلاصة الوحدة الأولى:

- **مفهوم النمو**
 - ينمي النمو بالزمنية من إمداد الكائن الحي خلال فترة زمنية من عمره نتيجة تكوين الخلايا عن طريق الانقسام. ويعتبر النمو عند الخلايا النباتية في كل خلايا الأعضاء. أما عند النباتات فتصمم النسيج المرتبط (النسيج المولود) الذي يوجد في النسيج النباتي للجذور والبراعم في البذور، مما يعطي الخلايا النباتية جملة ترجمة في النمو طولًا. أما النمو العرضي للجذور والبراعم فين تطور نسيج الكليوم المتاج على النشاط النباتي، مما يسمح بإرسال العضو النباتي.
ما مصدر المادة الضرورية لهذا النمو؟

المصدر الأول:
- النباتات:
 - البنفسجية: تستخدم الطاقة من الشمس للحصول على النور للنمو.
 - النباتات الأخرى:
 - النباتات المركبات: تستخدم النور للنمو.

المصدر الثاني:
- المصدر الألياف:
 - النباتات:
 - النباتات المركبات: تستخدم النور للنمو.
 - النباتات الأخرى:
 - النباتات المركبات: تستخدم النور للنمو.

خلاصة الوحدة الثانية:
- مصدر نظام النمو الحيوى:
 - النباتات:
 - النباتات المركبات: تستخدم النور للنمو.
 - النباتات الأخرى:
 - النباتات المركبات: تستخدم النور للنمو.

نتيجة:
- النباتات:
 - النباتات المركبات: تستخدم النور للنمو.
 - النباتات الأخرى:
 - النباتات المركبات: تستخدم النور للنمو.
كيف يتم تحويل الطاقة الكيميائية الكامنة في هذه المركبات الحيوية إلى طاقة قابلة للاستعمال؟

- معالجة التهضّم: إن الحرق الكلي للمادة السكرية لا يتم إلا في وجود الأكسجين حيث يحرّر طاقة حرارية كلية تقدر بك: \[2840 \text{kJ} \]

\[C_6H_{12}O_6 + O_2 \rightarrow 6 \text{CO}_2 + 6 \text{H}_2\text{O} + 2840 \text{kJ} \]

أما داخل الجسم فإنه لا يمكن حرق المادة السكرية في درجة حرارة عالية، قبل الانهاء من ذلك فإن الجسم يتمضّم. لذلك يوجد نظام داخل الخلايا يعمل على التفكك التدريجي للسكر باستخدام الأكسجين وانتباع الطاقة لتخزينها في تركيبات خاصة تسمى ATP الكامنة في المادة السكرية للقيام بنشاطه المخالفة والباقي (60%) يفقد في شكل إشعاع حراري.

- معالجة التكاثر: يعني التكاثر نقل جزيئي للمادة السكرية في غاب الأكسجين، الذي يجعل طاقة قليلة لكن ينتج عنه مركب عضوي غني بالطاقة وغاز فحم.

وبعدها في حسب طبيعة المادة العضوية الناتجة: فهناك التصاعد الكحولي والتغذية الملبية معادلة التكاثر الكحولي:

\[C_6H_{12}O_6 \rightarrow \text{CO}_2 + \text{كحول} + \text{حرارة} \]

التي تأخذ درجة 25.

ما هي ماهي ممارسة وراء استخدام المغذيات عند الكائنات الحية؟

- المغذيات الغذائية في البذور.
- المغذيات للخلايا الناتجة عن عملية الهضم.
- النشاط بالجزء العضوي للمغذيات.
- استعمال الطاقة الكيميائية العامة في السكر بالدم.

تستخدم هذه المواد في:

1. التدفق الهزئي للمغذيات العضوية
2. استعمال الطاقة الكيميائية العامة في السكر بالدم.

خلصاً المجلة الأول:

- النمو بزيادة عدد الخلايا عن طريق الانقسام المتساوي.
- تتم هذه الزيادة بشكل مكثف وماد خاص.
الشبكة الغذائية

تذكير بالمكتسبات:

1. تعرفت في السنة الثانية متوسط على نظام البيئة بأنه مجموعة من العناصر الخفية.
2. تتمثل علاقة عناصر في مختلف الكائنات الحية والبيئة.
4. تتطلب الكائنات الخفية في النظام البيئي بعلاقات غذائية تعبر بالسلسلة الغذائية بحيث يكون الكائن الحي في حاجة من هذه السلسلة مصدر غذاء للكائن الذي يلتهم من أجل أن يوفر له المواد الغذائية والبيئة.

وفي الواقع أن السلاسل الغذائية في النظام البيئي لا تتألف بطريقة خطية حيث أن الكائن الحي يتناول فقط على نوع من الكائنات، فهذه بديلة ما يشكل الدائرة الشاملة من السلسلة الغذائية تطلق عليها الشبكة الغذائية.

فمثلًا العيان يمكن أن يكون مستهلكا ثانياً عندما يعتمد على البومة (مستهلك ثان) الذي يعتمد على الأرنب (مستهلك أول)، كما توضح ذلك الرسالة (1). ويمكن أن يكون مستهلكا ثانياً عندما يعتمد على النمر (مستهلك أول) والذي يعتمد بدوره على الحشيش (الكائن المنتج).

الأوراق 14
الثاني عشرة أولى

دخل الطاقة الضوئية في العالم الحي

للكائن الأول في السلسلة الغذائية، والذي يسمى المتصنح، هو المصدر الأول للأغذية العضوية للكائنات المستهلكة الأولى. والسائل

المطرح هو: ما هو مصدر الغذاء العضوي الطاقة بالنسبة للكائن المتصنح؟

تتغذى النباتات من الترقب على الماء والأملاح المعدنية (النlags النافض) وهي مركبات معدنية خالية من المركبات العضوية.

\[\text{إذا كان النباتات} \rightarrow \text{توظيفه من طرف النباتات:} \]

1. مصدر الكربون: إذا التسبة المذابة من الكربون، والذين هو

2. مصدر الأكسجين: في تكوين الأكسجين

ب - المادة العضوية المركبة: تتسم سلسلة التجربة في

الثيقة (3) أن المادة العضوية التي تتركها النباتات الخضراء هي

السكتريات.

ترتكب النباتات الخضراء أول مركب عضوي هو السكريات انتظارًا من غاز الفحم المصموم من الهواء الخارجي والضوء في عملية

\[\text{CO}_2 + 6 \text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2 \text{ضوء} \]

ترتكب السكريات، فاللمبات غازية تخضيريًا تتم في إنشاء

و حرق

و هوي عكس المركبات الغازية التنفس في عملية التنفس.

\[\text{nC}_6\text{H}_{12}\text{O}_6 + \text{nH}_2\text{O} \rightarrow \text{nC}_6\text{H}_{10}\text{O}_5 \text{nحشوة} \]

الثيقة (3) أن النباتات الخضراء التي تتركها السكريات، والذين هو

الثيقة 1. مصدر الكربون: إذا التسبة المذابة من الكربون، والذين هو

ب - المادة العضوية المركبة: تتسم سلسلة التجربة في

الثيقة (3) أن المادة العضوية التي تتركها النباتات الخضراء هي

السكتريات.

تتغذى النباتات من الترقب على الماء والأملاح المعدنية (النlags النافض) وهي مركبات معدنية خالية من المركبات العضوية.

ا. تطور التمثيل الضوئي، كما توضح المعادلة التقليدية التالية:

\[\text{2H}_2\text{O} \rightarrow 4\text{H}^+ + 4\text{e}^- + \text{O}_2 \text{ضوء} \]

يتم التفكك في إنشاء و حرق

و هوي عكس المركبات الغازية التنفس في عملية التنفس.

\[\text{nC}_6\text{H}_{12}\text{O}_6 + \text{nH}_2\text{O} \rightarrow \text{nC}_6\text{H}_{10}\text{O}_5 \text{nحشوة} \]

الثيقة (3) أن النباتات الخضراء التي تتركها السكريات، والذين هو

الثيقة 1. مصدر الكربون: إذا التسبة المذابة من الكربون، والذين هو

ب - المادة العضوية المركبة: تتسم سلسلة التجربة في

الثيقة (3) أن المادة العضوية التي تتركها النباتات الخضراء هي

السكتريات.

تتغذى النباتات من الترقب على الماء والأملاح المعدنية (النlags النافض) وهي مركبات معدنية خالية من المركبات العضوية.

ا. تطور التمثيل الضوئي، كما توضح المعادلة التقليدية التالية:

\[\text{2H}_2\text{O} \rightarrow 4\text{H}^+ + 4\text{e}^- + \text{O}_2 \text{ضوء} \]

يتم التفكك في إنشاء و حرق

و هوي عكس المركبات الغازية التنفس في عملية التنفس.

\[\text{nC}_6\text{H}_{12}\text{O}_6 + \text{nH}_2\text{O} \rightarrow \text{nC}_6\text{H}_{10}\text{O}_5 \text{nحشوة} \]

الثيقة (3) أن النباتات الخضراء التي تتركها السكريات، والذين هو
الوحدة الثانية: انتقال المادة والطاقة في النظام البيئي

تمثيل: تمتلك النباتات الماء والأملاح المعدنية من النسيج (النسج الماء) لتقليل إلى الساق والأوراق.

ما هو مسار النسيج الماء؟

1- العناصر البيئية لنقل النسيج الماء:
• الأوراق المبكرة: تتصل الجذور الماء والأملاح من منطقة الأوراق المبكرة وهي مادة عن امتدادات مستقلة تزيد من مساحة الجذور، مما يساعد على امتصاص أكبر كمية من الماء والأملاح.

- الأوراق الخشبية: توضح النسيج الماء (6) بأنها عبر عدة قنوات تشكلت من تركيب خلايا غليظة فوق بعضها ومفرغة من الخلايا الخشبية تجمع في شكل كتل أو حزم مكونة نسيج نافذ ينقل عبرها النسيج المائي. وهي تختلف عن النسيج الذي ينقل عبر النسيج الكاملاً (النسيج (10) من الصورة). كما تلاحظ أن أوعية الخشب لا توجد في شكل وعاء واحد بل العديد من الأوراق الرقيقة وذلك لتسهيل صعود النسيج إلى أعلى للسماوات طويلة كما هو الحال عند الأشجار مثل الألوس.

ملاحظة: يمكن توضيح دور الأوعية الخشبية عن طريق جذر النبات في صور صغيرة الأضواء، حيث تلاحظ بعد فترة تلوث الأوعية الخشبية وعود الأوراق بآثر أخر.

كيف تتحول المركبات العضوية وكيف يتم تدفق الطاقة عبر الشبكة الغذائية؟

ترتبث الكائنات الحية في نظام بيئي علاقات غذائية في شكل سلسلة غذائية متداخلة تسمى الشبكة الغذائية يكون المصدر الأول فيها للمركبات العضوية هو الكائنات المنتجة وهي النباتات الخضروات والتي تتحاكي نفسها عن طريق عملية التركيب الضوئي والحصول على المركبات العضوية والطاقة. يوضح المخطط التحويلي التالي كيف تنتقل المادة العضوية عبر الشبكة الغذائية حيث نلاحظ أن جزء منها هو الذي ينقل إلى الكائنات المستهلكة والتي تضيف في شكل جذور وفطنت. وتوضح الكيفية تدفق الطاقة والتي مصدرها الضوء أو الشمس جزء منها يتم استهلاكها وباقيها يضيف في شكل اشتعال حراري وبالتالي فإن الهدف من انتقال المواد العضوية عن طريق التغذية هو من أجل تدفق الطاقة عبر الكائنات الحية والتي تصدر أصلاً من الشمس.

إن كل ما يشهد من علاقات غذائية بين كائنات النظام البيئي من اقتصار وتعويش وتفاعل هو ثمرة لاستخدام هذه الطاقة.
تحسين إنتاج الكتلة الحيوية

تمهد: ما دام الإنسان في حاجة ماسة إلى مغذيات لا تستخدمها كفالة أولى في التركيب الحيوية واستخلاص الطاقة، لذلك لا بد من الحصول على أغذية كافية ومستقلة وهذا لا يكون إلا عن طريق ما يسمى بالأمن الغذائي أي زيادة حجم المحاصيل الزراعية لتلبية الطلب المتزايد عليها. مما يتطلب تحسين الإنتاج الزراعي.

كيف يمكن تحسين الإنتاج الزراعي والحيوياً وكيفا من أجل تلبية الطلب المتزايد للأغذية الأساسية للإنسان؟

ينبغي أولاً التعرف على شروط النمو الجيد للنباتات ومنه استغلالها في تحسين انتاج المحاصيل الزراعية التي تقسم إلى عوامل خارجية وداخلية.

تأثير العوامل الخارجية على إنتاج الكتلة الحيوية

تمهد: ينبعي أولاً التعرف على شروط النمو الخارجية للنموا الجيد للمحصول النباتي ومن ثم استغلالها في تحسين الظروف المناسبة للمحصول الزراعي. تتمثل هذه الشروط الخارجية في العوامل الترابية والمناخية.

- العوامل الترابية:

- الحئرة: هو تقلب التربة في شكل شقوق وأفلاط من أجل تحسين الخصائص الفيزيائية والبيولوجية للترية وقتل النباتات الضارة وطرد الفراش.

- التسميد: يهدف إلى الرفع من خصوبة التربة بتوفير العناصر الغذائية، ويعتبر إضافاً مادة كيميائية باستعمال عنصرين كيميائيين مثل الأماته الحوزية والبوتاسية والفيوسفاتية (NPK) أو تسميداً عضويًا بوضعيفتها النباتات وفضلات الحيوانات في التربة والتي تحلل وتتمددن ببطء لتوفير العناصر الكيميائية الضرورية للنباتات. وما ينبغي ملاحظته أن تجاوز الكمية اللازمتة تصبح سامة وتقتل النباتات. لذلك ينبغي مراعاة مقادير اللازمة والكافية في عملية التسميد.

- الرؤو: سقي الحقول خاصة في الفترات الغير مطمرة وفي المناطق الجافة. من أنواع الرؤو بالتقطير والرو المطري والرو المحوري...

توضيح الوثيقة (1) بشكلها بعض أنواع السقي.
تتواجد بكثافة في المناطق الاستوائية لأن شدة الشمس تصل إلى قمة ع_province_0.png
وتحتوي على زهور بيضاوية شفافة مثل البلاستيك والزجاج.

تأثير CO2: تزداد شدة الترتيب الضوئي بزيادة غاز CO2

مفيوم العامل المحدد: يتطلب منحنى الوظيفة (2) فكرية العامل المحدد. وهو يعني أن نقص أو زيادة أحد العوامل السابقة (الحرارة في هذا المثال) يؤثر على مرود النباتات (من خلال التركيب الضوئي) رغم وجود العاملين الآخرين بقوة (وهما CO2 والإضاءة).

إلا أن النبات ينضج هذه العوامل في فترة فيضان متوسطية، حيث تتراوح الحرارة بين 35 و 40 درجة مئوية.

تأثير الإضاءة: تزداد شدة الترتيب ضوئي في الإضاءة تتج مع ضوء النباتات.

تأثير العوامل الداخلية على إنتاج الكتلة الحية

- استغلال العوامل الوراثية: تتضمن النسج النموذجي والتحويل الوراثي أن النبات هو مقر العوامل الوراثية والمتمدة في ADN. عند تعرض النبات للعوامل المتنوعة فإن النباتات سترسل المعلومات إلى ADN الذي يحتوي على معلومات الوراثية ويكون هناك تفاعل بين العوامل الوراثية والمتمدة في ADN وتأثير العواملجي.

- تأثير الفصائل: يتحكم النبات ينضج هذه العوامل في فترة فيضان متوسطية حيث تتراوح الحرارة بين 35 و 40 درجة مئوية، إلا أن النبات ينضج هذه العوامل في فترة فيضان متوسطية، حيث تتراوح الحرارة بين 35 و 40 درجة مئوية.
ب - استعمال التقنيات الزراعية: الإثار من النباتات دون استعمال البذور وتسمى التقنيات الخضرية، إذ تمكنت منها الإبقاء على الصرف السلالية المرغبة، بدأ التقنيات هو أخذ جزء من النباتات أو جزء من النباتات بضعة أجزاء. ثم زرعه في النباتات لينمو مطمئناً بانتظام صورة طبقة الأصل النباتية الأم لذلك يعتبر هذا النوع من التكاثر استثناء طبيعياً، وهكذا أداء أنواع من الاصحاب (5):
- الانتشار: مثل زرع قطع من البطاطس تحت التربة لتحول كل قطعة إلى نبات شوكًا.
- الجذور: اختيار ساق من نبات وفتحه في التربة مع الإبقاء على الاصحاب بالنبتة الأم حتى يمتد منها. وبعد أن تنمو جذرة العرضية يفصل بعد ذلك (الشكل 1).
- التقطيع: يتم في النباتات الشجرية بفتح جزء من شجرة بسيطة البذور أو القلم لتموز عكس مقطع شجرة أخرى من نوع قريب مثل تطعيم الخيمة على المشتهر، كما توضحه مستويات الاصحاب (6).

تمثل أهمية هذا النوع من التقنيات في الإثار من السلالات المرغوبة بالإضافة إلى أنها تنمو في فترة قصيرة مقارنة بالحالة الطبيعية، عن طريق البذور.

كيف يمكن تحسين الإنتاج النباتي والحيوي كما يلي?

- تحسين الإنتاج النباتي والحيوي

<table>
<thead>
<tr>
<th>عوامل داخلية</th>
<th>عوامل خارجية</th>
</tr>
</thead>
<tbody>
<tr>
<td>تكاثر خضري</td>
<td>تربة: مناخية: المزروعات المحمعية</td>
</tr>
<tr>
<td>تكاثر خضري</td>
<td>الأرض والزراعة</td>
</tr>
<tr>
<td>التربة</td>
<td>التربة والزراعة</td>
</tr>
<tr>
<td>التربة</td>
<td>الماء والأسمدة</td>
</tr>
</tbody>
</table>

|- تجربة إقامة البيوت المحمية لتوفر هذه الشروط من أجل المحافظة على بعض الصناعات المرغوبة والانتاج السريع. تستعمل تقنيات التكاثر الخضري مثل الانتشار والترقية والتطعيم.
- ت험ض أو تحمض زراعة: من أجل انتاج صناعات جديدة ومعاقبة للأمراض والأفات...
وحدة العضوية

المجال الرأيع

ما هي الأطعمة الفسيولوجية التي تسمح باستخدام الطاقة عن طريق الجهاز العضلي؟
وما هي الأطعمة الفسيولوجية التي تسمح بظهور الصفات الجنسية في مرحلة البلوغ؟

الجهد العضلي

الوحدة الأولى

تتطلب الحركة المتمثلة في الجهد العضلي طاقة وأكسجين. تستخرج الطاقة من المادة العضوية المغذية وهي السكريات والدهون، أما الأكسجين فيتم الحصول عليه عن طريق الرئتين في الجهاز التنفسي والذي ينقل الدم إلى خلايا العضلات.

بين الجدول التالي علاقة الجهد العضلي باستهلاك الأكسجين والجلوكوز وتدفق الدم في العضلات.

<table>
<thead>
<tr>
<th>استهلاك الجلوكونز (ملع)</th>
<th>استهلاك الأكسجين (ملع)</th>
<th>حجم الدم (ملع)</th>
<th>الوترة الحركية للجهد العضلي</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5</td>
<td>8.4</td>
<td>225</td>
<td>أثناء الراحة (أثناء الرياضة)</td>
</tr>
<tr>
<td>190</td>
<td>115</td>
<td>1040</td>
<td>أثناء نشاط حركي مثل الرياضة</td>
</tr>
</tbody>
</table>

بين الأكسجين من البداية إلى النهاية يرفع أداء الجسم إلى كمية أكبر لتوفير النشاط والمزاج، ولهذ يعني التأثير على الأعضاء الأخرى كالقلب لضخ الدم والرئتين لتوفير هذين العنصرين للعضلات.

ما هو تأثير الجهاز العضلي على الجهاز التنفسي ودوران الدم؟

- علاقة الجهاز العضلي بالوترة التنفسية: هي عدد الحركات الرئوية المتمثلة في التنفس والزفير خلال دقيقة، بينما الجدول التالي بتزداد نشاط الجهاز العضلي.

<table>
<thead>
<tr>
<th>الوترة التنفسية (عدد ضربات القلب في الدقيقة)</th>
<th>الجهاز العضلي</th>
</tr>
</thead>
<tbody>
<tr>
<td>أثناء الراحة (أثناء الرياضة)</td>
<td>25</td>
</tr>
<tr>
<td>أثناء نشاط حركي مثل الرياضة</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>130</td>
</tr>
</tbody>
</table>

خلال الوحدة الأولى

بزيادة نظام النشاط الخاص بالجسم، فإن الجهاز العضلي يوفر القدرة على التمثيل الدوائي وبروتينات الخلايا، ولكن هذا الجهاز متطلب وورقة نبات تهدف مباشرة إلى تحسين بنية القلب.

هذه المواد المذكورة تتناول في جهاز فصاعلي لقياس الجهاز العضلي وعلاقته بالوترة التنفسية والتنفس، فينصح بالعمل على ضبط الجسم في الجهاز العضلي وتحقيقه إلى الجهاز التنفسي.
في الجسم البشري، يلعب الجهاز العصبي دورًا هامًا في المساعدة على التحكم في العديد من الإرهاقات، سواء كانت ناتجة عن النشاط البدني أو الفيسيولوجي. الجهاز العصبي يتألف من ثلاثة أقسام رئيسية: الجهاز العصبي المركزي، والجهاز العصبي الأفقي، والجهاز العصبي والفكي. تعرف على الإعدادات الفيسيولوجية الخاصة بالجهاز العصبي، وتعرف على التفاعلات بين الإرهاق والتنفس والحركة، وتعرف على التفاصيل الفيزيولوجية الخاصة بالجهاز العصبي.
ما هي الأدلة التي تسمح بالتنسيق بين هذه الحركات؟

الادلة الدموية المسؤولة عن الأفعال الإرادية ترسل إشارات إلى الجهاز العصبي الودي الذي يوجد في الدماغ الشوكي. فعمل على إسراع نضوج القلب وحركة التنفس زيادة بزيادة الشهية والزفير، وذلك لتوفير الكمية اللازمة من الجلوكوز والأكسجين. إن اهتماف من زيادة نضوج القلب هو زيادة من تدفق الدم المحم بالأنسجة والجلوكوز نحو الأدلة التنفسية، فهي من أجل توفير الأكسجين عن طريق الشهية وتخليص الجسم من CO2 عن طريق الزفير.

تخص مخطط الوحة (7) كيف يتوجه الجهاز العصبي الإيقاعي عمل مختلف الأعضاء.

التنظيم الهرموني

الوحدة الثالثة

تتولى عملية النمو بأمر حاكمة وهي البلوغ والتي يبني فيها الفرد القدرة على الإنجاب. لقد درست في السنة الرابعة متوسط صفاته هذا المرحلة من نمو الفرد والتي تميز فيها صفات جينية أساسية وثانوية واضحة تتميز الذكر عن الأنثى وخصائص عند الإنسان كا بين ذلك الجدول التالي:

<table>
<thead>
<tr>
<th>الأنثى</th>
<th>الذكر</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمو وبروز الثديين</td>
<td>ظهور الشعر في الوجه ومنطقة الصدر</td>
</tr>
<tr>
<td>نمو الصوت</td>
<td>غطاء الصوت</td>
</tr>
<tr>
<td>إنشاء أكثر في منطقة الحوض والفعذ</td>
<td>بروز العضلات المفتوحة</td>
</tr>
<tr>
<td>نمو الشعر في الإبط والعانة</td>
<td>نمو الشعر في الإبط والعانة</td>
</tr>
<tr>
<td>نمو الجهاز التناسلي الأنثوي والمبيض</td>
<td>نمو الجهاز التناسلي الذكري والخصية</td>
</tr>
<tr>
<td>دورة الحيض</td>
<td>إفراز السائل النوي</td>
</tr>
</tbody>
</table>

GnRH

ما هو الإعصار المستقل عن ظهور هذه الصفات الجنسية؟
وكيف يتم التنسيق فيما بينها؟

1- دور الحوية: إن تزعج الجنسية لدى حيوان يؤدي إلى اختفاء الصفات الجنسية الذكرية، وعند زرعها فإن هذه الصفات تظهر من جديد. تُعرف فصول هرمون التستوستيرون وهو مكون من ظهور الصفات الجنسية الذكرية.

2- دور البيض: إن استوادما البيض عند الأنثى يؤدي إلى العقم واختفاء الدورة الشهرية. وعند زرعها تظهر الدورة الشهرية من جديد. يُعرف البيض هرمون الأستروجسترون من طرف الجريب وهرمون البروجسترون من طرف الجسم الأيسر.

إن هذه النتائج التي تحدث للганية في السن البلوغ هو حدوث الدورة الشهرية، وتحدث تدفق النمو في الأول من كان ويستمر حتى 13 و14 عاماً.

كيف تحدث هذه الصفة الجنسية الأنثوية؟

الدورة الشهرية بفعل النشاط الهرموني لكل من تعتصرة الجسم النوي والقص الأصفر لغدة النخاع الرئيسي في الجهاز العصبي للمبيض في الجهاز التناسلي:
للمريضة، يشير النص إلى نشاط هرمون GnRH الذي يحتوي على النص الدقيق للهرمونات الجنسية على إفراز هرمون LH وFSH، ويرجع هذا إلى أن نسبة مضافة للهرمونات الإفرازية المتزايدة في الدماغ، مما يؤدي إلى زيادة إفراز هرمون GnRH وFSH، وبناءً على ذلك، ينتج عن ذلك إفراز هرمون LH وFSH في الدم، مما يؤدي إلى النمو والتطور في الأوعية الدموية.

خلاصة المقال الرابع

ما هي الالعاب الفسيولوجية التي تسمح استعمال الاطاقة عن طريق ا تهك الحمض؟
ما هي الالعاب الفسيولوجية التي تسمح بظهور الصفاء الجنسية في مرحلة البلوغ؟

تتمثل هذه الالعاب في دور الحاوي للجهاز العصبي الذي يسمى بين الأعضاء والجهاز العصبي:
- تدخل الجهاز العصبي في التنسيق بين الأعضاء في المحيط العضلي.
- تدخل الجهاز العصبي في التنسيق بين مختلف الاتجاهات لتحسين الصفات الجنسية في مرحلة البلوغ.